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Factors limiting the accuracy of 
measurements of surface tension by the 
sessile drop method 
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Different sources of error in determining surface tension by the sessile drop technique are 
discussed. The influence of uncertainties in measuring drop co-ordinates are quantitatively 
evaluated, and the results tested on Ag and Pb drops at different temperatures. Shifts in 
surface tension values, due to errors in determining the exact scale factor and to errors in 
reading temperature or density, are calculated, and a nomographic chart, to find the 
optimum drop weight, is also presented. 

1. Introduction 
Since 1883, when the elegant work by Bashforth 
and Adams [ 1] was published, an accurate numeri- 
cal solution of the fundamental Laplace equation 
for uniform-tension surfaces has been available to 
anyone who wants to deduce surface tension values 
from measured curvatures of liquid interfaces. 

Fluid drops resting on horizontal supports, 
that is, "sessile drops", have always attracted the 
attention of scientists, especially for measurements 
at high temperatures, both because such drops 
offer minimum contact area with container walls, 
and because true equilibrium conditions may be 
readily attained. But, in spite of their graceful and 
apparently simple shape, problems always arise 
when precise values of surface tension are required, 
as demonstrated by the large sum of scattered 
values reported in the literature, even in the case 
of the best-known metals. 

In this paper, on the grounds of our experience 
in this field, we point out some main points which 
seem to have been disregarded or not sufficiently 
quantified in previous, though excellent, reviews 
[2-6] .  

The measuring of surface tension by the sessile 
drop technique is essentially based on the deter- 
ruination of the shape factor/3 and of the radius 
of curvature b at the drop apex, the two para- 
meters being linked by the relationship: 

b2pg 
- ( 1 )  

g 

where/9 is the density difference between the liquid 
and the surrounding medium, g the acceleration 
due to gravity, and o the interracial tension. These 
quantities are included in the general equation 
describing the free surface of the sessile drop: 

[ dx--g + 1 +  xdx 

= (2 + ~z) i + (2) 

which has no analytical solution. For this reason, 
two main procedures are nowadays employed: 

(a) utilizing the tables prepared by Bashforth 
and Adams a century ago by the method of 
quadratures; 

(b) utilizing computerized non-linear fitting 
methods, which fit the measured drop profile to 
a theoretical one by optimizing some parameters, 
like a and/3. 

Typical examples of the two methods are those 
proposed by Dorsey [7], Kozakevitch and Urbain 
[8], Butler and Bloom [9], and Maze and Burnet 
Uo]. 

Dorsey's method is based on the measurement 
of the ratio of the distance OM (Fig. 1) (when 
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q~ = 45~ to the maximum radius of  the drop. This 
value is then introduced in an empirical equation 
(derived from Bashforth and Adam's Tables), 
which immediately gives the required a value. 

Kozakevitch and Urbain [8] improved this tech- 
nique by simultaneously measuring the OM/rma x 
ratio for four different values of  ~b (45 ~ 60 ~ 
120 ~ , 135~ Four/3 values are then found by inter- 
polating the above-mentioned tables, weighting 
these values, giving preference to those corre- 
sponding to the higher r values, and finally finding 
the correct a value from a special table o f p  = rib 
values against/3 (average). 

On the other hand, computerized methods do 
not follow the work by Bashforth and Adams, and 
every time find the best fitting of the above 
parameters. 

In the following we shall refer both to the 
methods of  Kozakevitch and Urbain and Maze 
and Burnet as they represent, in our opinion, good 
typical examples of  the two kinds of  approaches. 

We shall discuss three principal sources of  error 
which affect final surface tension values. Reference 
will only be made to the two methods mentioned 
above, even if these sources of  uncertainties often 
undermine other methods, too. 

We distinguish three main classes: 
(a) errors in the measurement o f  the drop 

profile; 
(b) errors arising from density determination; 
(c) physico-chemical effects. 

2. Measurement of the drop profile 
2.1. Errors in reading drop co-ordinates 
With reference to the method of  Kozakevitch and 
Urbain [8], we are able to quantify the influence 
o f  measuring errors on drop co-ordinates according 
to the following considerations. 

The variation of  o on 13 values may be written, 
from Equation 1, as: 

do _ 1 2pgr 2 rip 

b 2 Pg /3~ p/3 

M 

~z 

\ 

Figure I Sessile drop profile. Dorsey and Kozakevitch 
construction. 

: ~- -p-- ~ ] ,  (3) 

where p = rib is the ratio of  the maximum radius 
of  the drop to the radius of  curvature of  the apex. 
But, as p and u = h/r (see Fig. 1) are both func- 
tions of/3, then du/d/3 =f ' ( /3)  arid dp/d~ = h'(#), 
so that: 

)1 o 1 +  nt ) h'(/3) (4) 

f(/3) and h(/3) are easily found by a suitable fitting 
o f  tables similar to those published in [8]. We 
employ the following relationship, in order that 
the first derivative may be as smooth as possible: 

T A B L E I Coefficients of  the  generalized Equat ion 5 . 0  </3 < 8 

q~ A B C D S.D. 

u = f(/3) 

p = h(~) 

45 0.3987 5.394 • 10 -2 - -- 2.1243 X 10 -4 
60 0.9799 8.527 • 10 -2 - -- 4.7472 X 10 -4 

120 3.0781 -- 0.374 29 6.8368 X 10 -2 -- 1.0882 X 10 -3 
135 2.5049 -- 0.472 36 9.5222 X 10 -3 -- 1.8164 X 10 -3 

- 1.0424 -- 0.159 82 - 7.4322 X 10 -4 

6.4 X 10 -4 
1.2 X 10 -3 
1.1 X 10 -3 
1.3 X 10 -3 

1.8 • 10 -3 

2896 



20 l -~ (%) 

10 
=45 ~ 

(o) 
4 6 13 

2( 

10 

 o.oo  

= 60 ~ 

0 
(b) 

4 6 13 

2~ i ~6E(~ 

10 

~ 0 . 0 0 1  

0 =120 ~ 

(e) 
2 4 6 13 

20 

~-~ (%) 

10 

0 Z 
(d) 

~=135 ~ 

4 6 

Figure 2 Relative errors in surface tension as a function of/3, for measuring uncertainties of 0.1 and 0.5%. 

u = A + B~/t3 + Ct3 + Dr3 2; (5) 

the coefficients appearing in Equation 5 are given 
in Table I. du can be evaluated by the relationship 

[81: ~ ,) du = -  u + l +  (6) 
r Icos~l  

where r = 45 ~ 60 ~ 120 ~ 135 ~ and 6 is the true 
measuring uncertainty in the X-direction. 

The results of  Ao/o against/3 reported in Fig. 2 
for 6 / r = 0 . 1 %  and 0.5% clearly show that, for 
each r value, the value of a is always affected by a 
large error, which turns out to be 2 - 5 %  (when 
/3 > 2) if we can read co-ordinates with an accuracy 
of, at least, 0.1%. The error is larger for r = 45 ~ 
and decreases for r = 60 ~ 120 ~ 135 ~ It is equally 
worth noting that, if in reading co-ordinates, a 
precision higher than 0.1% cannot be obtained, it 
would be useless to work with drops with/~ values 

less than 2, since it would result in errors of 1 0 -  
50%. Nevertheless, the simultaneous application of 
the four sets of measurements to the same drop, 
strongly reduces the standard error of the sample, 
bringing it down to 1.5-2%, which value is 
commonly found through a correct application 
of this method. 

The consideration made above also demon- 
strates that the effect of drop size on the accuracy 
of surface tension measurements found by 
Dismukes [19] and Bonfield [20] must be seen, 
in a more general way, as a dependence on the/3 
factor. For drops of  the same material at the same 
temperature this effect turns out to be governed 
by the drop size. 

2.2. Errors due to uncertainties in the 
magnification factor 

The knowledge of the magnification factor, that 
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is, the ratio between the true and measured 
dimensions of the drop is a necessary condition in 
computing surface tension from experimental 
observations. Taking into account Equation 1, 
we see that the scale factor F affects only the 
radius of curvature b. The dependence of o on F 
can be written as: 

do b2gp 
- - -  2F 

f3 
that is 

do a 
d F  - 2 ~ (7) 

The relative uncertainty in a is then twice as 
great as the relative uncertainty in the scale factor. 
Fig. 3 shows that Equation 7 is verified in two real 
cases, namely Ag and Pb at 1100 and 510~ 
respectively. 

2.3. Presence of geometr ical  anisot ropies  
A particular example of measuring inaccuracies is 
given by the presence of some anisotropy, either in 
the optical path or in the measuring instrument. 
Anisotropy may also arise during the development 
of the photographic Edna. We evaluated this effect 
for the same drops as before, assuming the Z-scale 
factor to be 0.1, 0.5, and 1% larger than the 
X-scale factor. We can see, immediately from Fig. 4 
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Figure 3 Relative errors in surface tension as a funct ion 

of uncertaint ies  in scale factor. Tests on Ag and Pb drops. 
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that co-ordinates have to be measured with an 
accuracy higher than 0.2% of each other, in order 
to let the relative uncertainty in o be under 1%. 
This is indeed a very important contribution to 
total accuracy, which requires both careful tests 
on spherical aberrations and consistent X - Z  
measurements. 

As far as recording of the drop profile is con- 
cerned, the best suited method is to make measure- 
ments directly on the film. This means that an 
optical bench is highly recommended, and good 
illumination of the drop is mandatory. Smolders 
and Duyvis [11] pointed out that a parallel light 
beam is necessary in order to avoid light beams 
reflected by the liquid surface altering the recorded 
drop profile. Even if we found, in our experiments, 
that this condition is not so strict, if a sufficiently 
high length-diameter ratio is used for the labora- 
tory furnace, it is worth noting that an error of 
-+ 5/lm in the positioning of the drop apex, which 
might be due to spurious reflections, could result 
in an uncertainty of about -+ 1% in surface tension. 
It is thus very advisable to use a monochromatic 
Nter (for example, Wratten 22 on a mercury lamp 
in order to pass the yellow 0.577-0.579 ~ band) 
to avoid diffraction effects, to obtain better focus- 
ing, and to exploit the photographic film in its 
imaximum sensitivity range. 

Ag 

b 

i . . . .  t 
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Figure 4 Relative errors in surface tension as a funct ion or  

measuring anisotropy along the X- and Z-directions. Tests 
on Ag and Pb drops. 



Drops must be perfectly levelled and with a 
perfect cylindrical symmetry. In order to fulfil 
this condition, when contact angles are not to be 
measured, we prefer to use supports with a small 
cylindrical hole or a spherical cup drilled in them. 

The above considerations clearly show, in a 
quantitative way, that large uncertainties in cr 
values may stem from the following factors: 

(1) choice of an inappropriate ~ value (lower 
than about 2); 

(2) utilization of a "not excellent" measuring 
system; 

(3) inaccuracies in optical arrangements and in 
the photographic recording system. 

We think that the great dispersion of exper- 
imental data usually found even in the case of the 
"simplest" metals is mainly due to these effects. 

3. Error in density 
Density of the liquid metal is one of the "external" 
parameters which it is necessary to know in order 
to apply the sessile drop method. 

In principle, the two methods described in this 
paper are able to give the volume of the molten 
drop. The knowledge of the exact weight of the 
drop immediately gives the required density value. 

Nevertheless, we found that Kozakevitch's 
method does not give the volume to the necessary 
precision; on the contrary, in order to apply 
correctly the values derived from Maze and Burnet's 
method, it is necessary to evaluate accurately the 
evaporation rate of the molten phase, for example, 
by means of parallel experiments on a thermo- 
balance [12]. In normal practice, good density 
values are taken from the literature and used to 
evaluate cr. However, the temperature of the drop 
should be known exactly. Referring again to 
Equation 1, we have: 

da o dp 
- - -  (8) 

dT p dT" 

Table II shows the magnitude of this correction 
for silver and germanium. From Equation 8 and 
from the examples shown in Table II, we see that 
any error in determining the true temperature of 

the sample is, in part, self-compensated by the 
effect of the negative temperature coefficient of 
the sample density. 

4. Physico-chemical effects 
The great influence of adsorption of foreign ele- 
ments on surface tension values is very well- 
known and does not require any further discussion 
[13, 14]. It is only worth noting that the ability 
to depress surface tension, i.e. "tensioactivity", 
is strictly connected with the difference between 
the surface tensions of the two pure components. 
It should be pointed out that even small amounts 
of active elements, like oxygen, sulphur, phos- 
phorous, etc., are sufficient to dramatically 
depress the surface tension of a pure metal 
(0.1% S lowers the (~ of Fe by 30% [15], and 
10-4% O lowers the o of Ag by about 15% [16]). 

For this reason, not only is it necessary to make 
a chemical analysis before and after runs, but more 
sophisticated techniques, like Auger spectroscopy 
[17], should also be employed in order to make 
continuous in situ analysis of the surface compo- 
sition of the liquid drop. Unfortunately, however, 
all techniques for surface analysis utilize the 
emission of electrons or ions, and for the same 
reason, UHV techniques are required. This con- 
dition severely limits the number of liquid metals 
that it is possible to investigate. At the same time, 
evaporation effects become more important, lead- 
ing to a variation in surface tension values [18]. 

Similarly, it is equally important to know the 
purity of the gases employed: continuous monitor- 
ing of the oxygen content is today possible by 
means of solid-state probes [16]. 

5. Conclusions 
Different sources of errors which are often 
encountered in determining surface tension by the 
sessile drop method hav e been investigated. 

"Computerized" and "classical" methods used 
to obtain surface tension values from measurements 
on the drop shape propagate the various classes of 
errors in different ways. Independently of the 
method employed, we found that uncertainties in 

T A B L E I I Effect of temperature in determination of a values (from Equation 8) 

M e t a l  Temperature ( ~ C) o p 
(mN m- 1) (g cm- 3) 

d a (mN m -1 K -z) dd-~ (gcm-3 K-l) dT 

Ag 1100 860 9.22 -- 9.07 X 10 -4 8.46 X 10 -2 
Ge 1100 575 5.41 --5 X 10 -4 5.3 • 10 -2 
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the scale factor are magnified by a factor of two in 
surface tension values. However, if this uncertainty 
is present in only one measured direction (geometri- 
cal anisotropy), final values may exhibit an uncer- 
tainty from four to six times larger (depending on 
the /3 value). On the contrary, errors in reading 
temperature and then in determining density affect 
the real value of a to a much smaller extent. 

On the other hand, an analysis of the effects of 
errors in measuring co-ordinates on final a values 
is only possible, in a fairly simple way, when using 
classical methods. Our analysis demonstrated that 
co-ordinates have to be measured to a precision 
greater than 0.1% (with/3 values higher than 2), 
if an accuracy of o of more than 2% is required. 

The above considerations demonstrate that the 
factors limiting the precision in the determination 
of surface tension values are, still, accuracy and 
reproducibility in reading the co-ordinates of the 
drop profile. Every improvement in this direction, 
together with the control of surface segregation, 
will bring the sessile drop method to the same level 
of accuracy as typical in other low-temperature 
methods. 
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Appendix 
In this paper, we have demonstrated that, in order 
to minimize errors, it is necessary to work with 
drops with values greater than two. It is then 
necessary to know a priori the weight W of the 
drop to be melted. From Equation 1, we see that 
/3 depends on the system we are considering: in 
general we need to link the mass of the drop to/3 
through the values of p, a, 0 and its volume. 

From the tables of Bashforth and Adams [1], 
we find the value of V*= V/b 3, given 0 and/3. 
On the other hand, 

W = Vpg (9) 

From Equations 1 and 9, we obtain 

W = V*(pg)-~o}/3 ~ (10) 

which represents the required relationship. 
Equation 10 can be represented in nomographic 

form as in Fig. A 1. 

Procedure 
First, an estimation of 0 is made and the value of 

Y B  R S 
10 2000 

5 

4 

3 

W 
101 
80 

60 

40 

20 

10 
8 

6 

4 

2 �9 

1 " 

0.8 
9.6 

).4 

Z 2  

).1 

2 

t 
I 

6, ~ 

r 

8 

19 
: ] 10  

- 4 1 2  

4 1 4  

---4 

4 1 6  

J '8 
2 O  0.2 2 

60  80  I 0 0  120 140 

Contoct ongle 
Figure AI. Nomographic chart for determining the optimum drop weight from a given set of ~, p and/~ values. 
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V * =  V/b 3, corresponding to  the desired/3 value, 

is found.  A line is t hen  set up th rough  the V* value 

and the/3  value on the B scale: the  in tersec t ion  o f  

this line wi th  the  X reference line is no ted .  A 

second line is then  established f rom this po in t  to  

the  selected densi ty  value (R scale), and the  inter- 

section wi th  the Y reference line is again no ted .  

Then,  a third line f rom this po in t  to the  es t imated 

value o f  o on  the  S scale will  intersect  the W scale 

at a value which is the  required weight  o f  the drop 

expressed in grams. 

References 
1. F. BASHFORTH and J. C. ADAMS, "An attempt to 

test the theories of capillary action" (Cambridge 
University Press, 1883). 

2. P. KOZAKEVITCH,"Physicochemicalmeasurements 
at high temperatures", edited by J. O'M. Bockris, 
J. L. White and J.D. MacKenzie (Butterworths, 
London, 1959) p. 394. 

3. D.W.G. WHITE, TransASM55 (1962) 757. 
4. O. FLINT, J. Nuel. Mater. 16 (1965) 233. 
5. G. BERNARD and C. H. P. LUPIS, Met. Trans. 2 

(1971) 555. 
6. J .F .  PADDAY, "Surface and Colloid Science", 

Vol. 1, edited by E. Matjievic (Wiley-Interscience, 
New York, 1969) p. 101. 

7. N.E. DORSEY,J. Wash. Aead. Sei. 18 (1928) 505. 
8. P. KOZAKEVITCH and G. URBAIN, Mere. SeZ Rev. 

Met. 58 (1961) 40. 
9. J .N. BUTLER and B.H. BLOOM, Surface Sei. 4 

(1966) 1. 
10. C. MAZE and G. BURNET, ibid. 13 (1969) 451; 

24 (1971) 335. 
11. C.A. SMOLDERS and E. M. DUYVIS, Ree. Tray. 

Chim. Pays Bas Belg. 80 (1961) 635. 
12. A. PASSERONE, R. SANGIORGI and G. VAL- 

BUSA, Ceramurgia Int. 5 (1979) 18. 
13. E.D. HONDROS, AIME "Precipitation Processes in 

Solids" edited by K. C. Russel and A. I. Aaronson 
(AIME Pub., 1976) p. 1. 

14. N. EUSTATHOPOULOS and J. C. JOUD, "Current 
Topics in Materials Science", Vol. 4, edited by 
E. Kaldis (North Holland, Amsterdam, 1980) p. 281. 

15. P. KOZAKEVITCH and G. URBAIN, Mem. Sei. Rev. 
Met. 58 (1961) 517. 

16. A. PASSERONE, R. SANGIORGI and M.L. 
MUOLO, Aeta MetaIl. in press. 

17. L. GOUMIRI, Doctoral Thesis, Grenoble (1980). 
18. C. MAZE and G. BURNET, Surface SeL 27 (1971) 

411. 
19. E.B. DISMUKES, J. Phys. Chem. 63 (1959) 312. 
20. W. BONFIELD,J. Mater. Sei. 7 (1972) 148. 

Received 18 December 1981 

and accepted 1 March 1982 

2901 


